Copied to
clipboard

G = C523SD16order 400 = 24·52

2nd semidirect product of C52 and SD16 acting via SD16/C4=C22

metabelian, supersoluble, monomial

Aliases: D20.1D5, C523SD16, C20.12D10, C10.13D20, C4.2D52, C52C82D5, (C5×C10).9D4, C53(C40⋊C2), C51(D4.D5), (C5×D20).2C2, C524Q82C2, C10.2(C5⋊D4), (C5×C20).4C22, C2.5(C5⋊D20), (C5×C52C8)⋊2C2, SmallGroup(400,67)

Series: Derived Chief Lower central Upper central

C1C5×C20 — C523SD16
C1C5C52C5×C10C5×C20C5×D20 — C523SD16
C52C5×C10C5×C20 — C523SD16
C1C2C4

Generators and relations for C523SD16
 G = < a,b,c,d | a5=b5=c8=d2=1, ab=ba, cac-1=a-1, ad=da, bc=cb, dbd=b-1, dcd=c3 >

20C2
2C5
2C5
10C22
50C4
2C10
2C10
4D5
20C10
5D4
5C8
25Q8
2C20
2D10
2C20
10Dic5
10Dic5
10Dic5
10Dic5
10Dic5
10C2×C10
10Dic5
4C5×D5
25SD16
5C40
5Dic10
5Dic10
5C5×D4
10Dic10
10Dic10
2D5×C10
2C526C4
5C40⋊C2
5D4.D5

Smallest permutation representation of C523SD16
On 80 points
Generators in S80
(1 42 49 63 66)(2 67 64 50 43)(3 44 51 57 68)(4 69 58 52 45)(5 46 53 59 70)(6 71 60 54 47)(7 48 55 61 72)(8 65 62 56 41)(9 21 74 39 25)(10 26 40 75 22)(11 23 76 33 27)(12 28 34 77 24)(13 17 78 35 29)(14 30 36 79 18)(15 19 80 37 31)(16 32 38 73 20)
(1 49 66 42 63)(2 50 67 43 64)(3 51 68 44 57)(4 52 69 45 58)(5 53 70 46 59)(6 54 71 47 60)(7 55 72 48 61)(8 56 65 41 62)(9 39 21 25 74)(10 40 22 26 75)(11 33 23 27 76)(12 34 24 28 77)(13 35 17 29 78)(14 36 18 30 79)(15 37 19 31 80)(16 38 20 32 73)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 23)(2 18)(3 21)(4 24)(5 19)(6 22)(7 17)(8 20)(9 68)(10 71)(11 66)(12 69)(13 72)(14 67)(15 70)(16 65)(25 57)(26 60)(27 63)(28 58)(29 61)(30 64)(31 59)(32 62)(33 49)(34 52)(35 55)(36 50)(37 53)(38 56)(39 51)(40 54)(41 73)(42 76)(43 79)(44 74)(45 77)(46 80)(47 75)(48 78)

G:=sub<Sym(80)| (1,42,49,63,66)(2,67,64,50,43)(3,44,51,57,68)(4,69,58,52,45)(5,46,53,59,70)(6,71,60,54,47)(7,48,55,61,72)(8,65,62,56,41)(9,21,74,39,25)(10,26,40,75,22)(11,23,76,33,27)(12,28,34,77,24)(13,17,78,35,29)(14,30,36,79,18)(15,19,80,37,31)(16,32,38,73,20), (1,49,66,42,63)(2,50,67,43,64)(3,51,68,44,57)(4,52,69,45,58)(5,53,70,46,59)(6,54,71,47,60)(7,55,72,48,61)(8,56,65,41,62)(9,39,21,25,74)(10,40,22,26,75)(11,33,23,27,76)(12,34,24,28,77)(13,35,17,29,78)(14,36,18,30,79)(15,37,19,31,80)(16,38,20,32,73), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,23)(2,18)(3,21)(4,24)(5,19)(6,22)(7,17)(8,20)(9,68)(10,71)(11,66)(12,69)(13,72)(14,67)(15,70)(16,65)(25,57)(26,60)(27,63)(28,58)(29,61)(30,64)(31,59)(32,62)(33,49)(34,52)(35,55)(36,50)(37,53)(38,56)(39,51)(40,54)(41,73)(42,76)(43,79)(44,74)(45,77)(46,80)(47,75)(48,78)>;

G:=Group( (1,42,49,63,66)(2,67,64,50,43)(3,44,51,57,68)(4,69,58,52,45)(5,46,53,59,70)(6,71,60,54,47)(7,48,55,61,72)(8,65,62,56,41)(9,21,74,39,25)(10,26,40,75,22)(11,23,76,33,27)(12,28,34,77,24)(13,17,78,35,29)(14,30,36,79,18)(15,19,80,37,31)(16,32,38,73,20), (1,49,66,42,63)(2,50,67,43,64)(3,51,68,44,57)(4,52,69,45,58)(5,53,70,46,59)(6,54,71,47,60)(7,55,72,48,61)(8,56,65,41,62)(9,39,21,25,74)(10,40,22,26,75)(11,33,23,27,76)(12,34,24,28,77)(13,35,17,29,78)(14,36,18,30,79)(15,37,19,31,80)(16,38,20,32,73), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,23)(2,18)(3,21)(4,24)(5,19)(6,22)(7,17)(8,20)(9,68)(10,71)(11,66)(12,69)(13,72)(14,67)(15,70)(16,65)(25,57)(26,60)(27,63)(28,58)(29,61)(30,64)(31,59)(32,62)(33,49)(34,52)(35,55)(36,50)(37,53)(38,56)(39,51)(40,54)(41,73)(42,76)(43,79)(44,74)(45,77)(46,80)(47,75)(48,78) );

G=PermutationGroup([[(1,42,49,63,66),(2,67,64,50,43),(3,44,51,57,68),(4,69,58,52,45),(5,46,53,59,70),(6,71,60,54,47),(7,48,55,61,72),(8,65,62,56,41),(9,21,74,39,25),(10,26,40,75,22),(11,23,76,33,27),(12,28,34,77,24),(13,17,78,35,29),(14,30,36,79,18),(15,19,80,37,31),(16,32,38,73,20)], [(1,49,66,42,63),(2,50,67,43,64),(3,51,68,44,57),(4,52,69,45,58),(5,53,70,46,59),(6,54,71,47,60),(7,55,72,48,61),(8,56,65,41,62),(9,39,21,25,74),(10,40,22,26,75),(11,33,23,27,76),(12,34,24,28,77),(13,35,17,29,78),(14,36,18,30,79),(15,37,19,31,80),(16,38,20,32,73)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,23),(2,18),(3,21),(4,24),(5,19),(6,22),(7,17),(8,20),(9,68),(10,71),(11,66),(12,69),(13,72),(14,67),(15,70),(16,65),(25,57),(26,60),(27,63),(28,58),(29,61),(30,64),(31,59),(32,62),(33,49),(34,52),(35,55),(36,50),(37,53),(38,56),(39,51),(40,54),(41,73),(42,76),(43,79),(44,74),(45,77),(46,80),(47,75),(48,78)]])

49 conjugacy classes

class 1 2A2B4A4B5A5B5C5D5E5F5G5H8A8B10A10B10C10D10E10F10G10H10I10J10K10L20A20B20C20D20E···20N40A···40H
order1224455555555881010101010101010101010102020202020···2040···40
size11202100222244441010222244442020202022224···410···10

49 irreducible representations

dim1111222222224444
type+++++++++-++-
imageC1C2C2C2D4D5D5SD16D10D20C5⋊D4C40⋊C2D4.D5D52C5⋊D20C523SD16
kernelC523SD16C5×C52C8C5×D20C524Q8C5×C10C52C8D20C52C20C10C10C5C5C4C2C1
# reps1111122244482448

Matrix representation of C523SD16 in GL6(𝔽41)

100000
010000
001000
000100
0000040
0000134
,
100000
010000
00353800
00124000
000010
000001
,
0110000
15110000
00391400
0026200
00002827
00001813
,
1960000
22220000
0013800
0004000
0000171
00004024

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,34],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,35,12,0,0,0,0,38,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,15,0,0,0,0,11,11,0,0,0,0,0,0,39,26,0,0,0,0,14,2,0,0,0,0,0,0,28,18,0,0,0,0,27,13],[19,22,0,0,0,0,6,22,0,0,0,0,0,0,1,0,0,0,0,0,38,40,0,0,0,0,0,0,17,40,0,0,0,0,1,24] >;

C523SD16 in GAP, Magma, Sage, TeX

C_5^2\rtimes_3{\rm SD}_{16}
% in TeX

G:=Group("C5^2:3SD16");
// GroupNames label

G:=SmallGroup(400,67);
// by ID

G=gap.SmallGroup(400,67);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,73,31,218,50,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^8=d^2=1,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^3>;
// generators/relations

Export

Subgroup lattice of C523SD16 in TeX

׿
×
𝔽