metabelian, supersoluble, monomial
Aliases: D20.1D5, C52⋊3SD16, C20.12D10, C10.13D20, C4.2D52, C5⋊2C8⋊2D5, (C5×C10).9D4, C5⋊3(C40⋊C2), C5⋊1(D4.D5), (C5×D20).2C2, C52⋊4Q8⋊2C2, C10.2(C5⋊D4), (C5×C20).4C22, C2.5(C5⋊D20), (C5×C5⋊2C8)⋊2C2, SmallGroup(400,67)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C52⋊3SD16
G = < a,b,c,d | a5=b5=c8=d2=1, ab=ba, cac-1=a-1, ad=da, bc=cb, dbd=b-1, dcd=c3 >
(1 42 49 63 66)(2 67 64 50 43)(3 44 51 57 68)(4 69 58 52 45)(5 46 53 59 70)(6 71 60 54 47)(7 48 55 61 72)(8 65 62 56 41)(9 21 74 39 25)(10 26 40 75 22)(11 23 76 33 27)(12 28 34 77 24)(13 17 78 35 29)(14 30 36 79 18)(15 19 80 37 31)(16 32 38 73 20)
(1 49 66 42 63)(2 50 67 43 64)(3 51 68 44 57)(4 52 69 45 58)(5 53 70 46 59)(6 54 71 47 60)(7 55 72 48 61)(8 56 65 41 62)(9 39 21 25 74)(10 40 22 26 75)(11 33 23 27 76)(12 34 24 28 77)(13 35 17 29 78)(14 36 18 30 79)(15 37 19 31 80)(16 38 20 32 73)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 23)(2 18)(3 21)(4 24)(5 19)(6 22)(7 17)(8 20)(9 68)(10 71)(11 66)(12 69)(13 72)(14 67)(15 70)(16 65)(25 57)(26 60)(27 63)(28 58)(29 61)(30 64)(31 59)(32 62)(33 49)(34 52)(35 55)(36 50)(37 53)(38 56)(39 51)(40 54)(41 73)(42 76)(43 79)(44 74)(45 77)(46 80)(47 75)(48 78)
G:=sub<Sym(80)| (1,42,49,63,66)(2,67,64,50,43)(3,44,51,57,68)(4,69,58,52,45)(5,46,53,59,70)(6,71,60,54,47)(7,48,55,61,72)(8,65,62,56,41)(9,21,74,39,25)(10,26,40,75,22)(11,23,76,33,27)(12,28,34,77,24)(13,17,78,35,29)(14,30,36,79,18)(15,19,80,37,31)(16,32,38,73,20), (1,49,66,42,63)(2,50,67,43,64)(3,51,68,44,57)(4,52,69,45,58)(5,53,70,46,59)(6,54,71,47,60)(7,55,72,48,61)(8,56,65,41,62)(9,39,21,25,74)(10,40,22,26,75)(11,33,23,27,76)(12,34,24,28,77)(13,35,17,29,78)(14,36,18,30,79)(15,37,19,31,80)(16,38,20,32,73), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,23)(2,18)(3,21)(4,24)(5,19)(6,22)(7,17)(8,20)(9,68)(10,71)(11,66)(12,69)(13,72)(14,67)(15,70)(16,65)(25,57)(26,60)(27,63)(28,58)(29,61)(30,64)(31,59)(32,62)(33,49)(34,52)(35,55)(36,50)(37,53)(38,56)(39,51)(40,54)(41,73)(42,76)(43,79)(44,74)(45,77)(46,80)(47,75)(48,78)>;
G:=Group( (1,42,49,63,66)(2,67,64,50,43)(3,44,51,57,68)(4,69,58,52,45)(5,46,53,59,70)(6,71,60,54,47)(7,48,55,61,72)(8,65,62,56,41)(9,21,74,39,25)(10,26,40,75,22)(11,23,76,33,27)(12,28,34,77,24)(13,17,78,35,29)(14,30,36,79,18)(15,19,80,37,31)(16,32,38,73,20), (1,49,66,42,63)(2,50,67,43,64)(3,51,68,44,57)(4,52,69,45,58)(5,53,70,46,59)(6,54,71,47,60)(7,55,72,48,61)(8,56,65,41,62)(9,39,21,25,74)(10,40,22,26,75)(11,33,23,27,76)(12,34,24,28,77)(13,35,17,29,78)(14,36,18,30,79)(15,37,19,31,80)(16,38,20,32,73), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,23)(2,18)(3,21)(4,24)(5,19)(6,22)(7,17)(8,20)(9,68)(10,71)(11,66)(12,69)(13,72)(14,67)(15,70)(16,65)(25,57)(26,60)(27,63)(28,58)(29,61)(30,64)(31,59)(32,62)(33,49)(34,52)(35,55)(36,50)(37,53)(38,56)(39,51)(40,54)(41,73)(42,76)(43,79)(44,74)(45,77)(46,80)(47,75)(48,78) );
G=PermutationGroup([[(1,42,49,63,66),(2,67,64,50,43),(3,44,51,57,68),(4,69,58,52,45),(5,46,53,59,70),(6,71,60,54,47),(7,48,55,61,72),(8,65,62,56,41),(9,21,74,39,25),(10,26,40,75,22),(11,23,76,33,27),(12,28,34,77,24),(13,17,78,35,29),(14,30,36,79,18),(15,19,80,37,31),(16,32,38,73,20)], [(1,49,66,42,63),(2,50,67,43,64),(3,51,68,44,57),(4,52,69,45,58),(5,53,70,46,59),(6,54,71,47,60),(7,55,72,48,61),(8,56,65,41,62),(9,39,21,25,74),(10,40,22,26,75),(11,33,23,27,76),(12,34,24,28,77),(13,35,17,29,78),(14,36,18,30,79),(15,37,19,31,80),(16,38,20,32,73)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,23),(2,18),(3,21),(4,24),(5,19),(6,22),(7,17),(8,20),(9,68),(10,71),(11,66),(12,69),(13,72),(14,67),(15,70),(16,65),(25,57),(26,60),(27,63),(28,58),(29,61),(30,64),(31,59),(32,62),(33,49),(34,52),(35,55),(36,50),(37,53),(38,56),(39,51),(40,54),(41,73),(42,76),(43,79),(44,74),(45,77),(46,80),(47,75),(48,78)]])
49 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 20A | 20B | 20C | 20D | 20E | ··· | 20N | 40A | ··· | 40H |
order | 1 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 20 | 2 | 100 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | 10 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 10 | ··· | 10 |
49 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | - | |||
image | C1 | C2 | C2 | C2 | D4 | D5 | D5 | SD16 | D10 | D20 | C5⋊D4 | C40⋊C2 | D4.D5 | D52 | C5⋊D20 | C52⋊3SD16 |
kernel | C52⋊3SD16 | C5×C5⋊2C8 | C5×D20 | C52⋊4Q8 | C5×C10 | C5⋊2C8 | D20 | C52 | C20 | C10 | C10 | C5 | C5 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 2 | 4 | 4 | 8 |
Matrix representation of C52⋊3SD16 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 34 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 38 | 0 | 0 |
0 | 0 | 12 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 11 | 0 | 0 | 0 | 0 |
15 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 39 | 14 | 0 | 0 |
0 | 0 | 26 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 27 |
0 | 0 | 0 | 0 | 18 | 13 |
19 | 6 | 0 | 0 | 0 | 0 |
22 | 22 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 38 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 1 |
0 | 0 | 0 | 0 | 40 | 24 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,34],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,35,12,0,0,0,0,38,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,15,0,0,0,0,11,11,0,0,0,0,0,0,39,26,0,0,0,0,14,2,0,0,0,0,0,0,28,18,0,0,0,0,27,13],[19,22,0,0,0,0,6,22,0,0,0,0,0,0,1,0,0,0,0,0,38,40,0,0,0,0,0,0,17,40,0,0,0,0,1,24] >;
C52⋊3SD16 in GAP, Magma, Sage, TeX
C_5^2\rtimes_3{\rm SD}_{16}
% in TeX
G:=Group("C5^2:3SD16");
// GroupNames label
G:=SmallGroup(400,67);
// by ID
G=gap.SmallGroup(400,67);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,73,31,218,50,970,11525]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^5=c^8=d^2=1,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^3>;
// generators/relations
Export